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Many Uls - One visual attention

To a human, the eyes are a perceptual channel, to get visual information.
To a computer, the eyes reveal visual and cognitive interest of the user.



Many Uls - One visual attention

Adapt Ul to user. User controls Ul with their eyes.
Personalise, learn, enhance. Select, use, manipulate.

Implicit < > Explicit




Many Uls - One visual attention

User controls Ul with their eyes.
Select, use, manipulate.

> Explicit

Adapt Ul to user.
Personalise, learn, enhance.
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Project 1: User Performance Modelling

Implicit Outline:
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The prediction bar

Users benefit by quick access of top5 predicted items.

Question 1: When do users benefit most?

Question 2: When do users benefit least?
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A

The prediction bar

Users benefit by quick access of top5 predicted items.

Question 1: When do users benefit most?

When the predicted items are far away.
Example: “Twitter”, where users scroll until “T”
—> High interaction cost

Question 2: When do users benefit least?
When the predicted items are very close.
Example: “Calender”, it’s on the same page!

- Low interaction cost
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Prediction benefit depends on interaction cost.
- Incorporate interaction cost in prediction.

- Use a model that predicts cost, i.e. app selection time.
- What model?



Existing menu performance models

Pointing model Fitts’ Law: pointing time depends on target distance & width.
* Only for last part of “touch T—a+blog, 1+ 124
W
Scrolling models: limited to mouse scrolling

* Time increases linear with scrolling distance (when unordered)
* Time increases logarithmic with scrolling distance (when ordered)

Menu models: limited to linear desktop menus
* Example SDP: Selection, Decision, Pointing --- Navigation?

« 2D grid menus? 1D, desktop 2D, mobile
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Project 1: User Performance Modelling

Implicit

Data collection & offline analysis

Outline:
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User study

* 20 user

e Columns: 5 (fixed)

* Rows: 12, 18, 24, 30
* 8 blocks

* 15 trials per block

= 9600 trials

Nexus 6p, Tobii Glasses 2 eye tracker



* Rows

18, 24, 30

12 rows (variable)

5 columns (fixed)
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No scrolling needed

Scrolling needed



Project 1: User Performance Modelling

Implicit

Data collection & offline analysis

Outline:

1.ldea

2.User study
3.Results

4.Model & Evaluation



Res u Its Learning Visual search Navigation Pointing



Res u Its Learning Visual search Navigation Pointing

Block 1

.



Res u Its Learning Visual search Navigation Pointing

I 12-row 24-row

To take into account the effect that users become
I 18-row I 30-row

better at examining each row with practice, the
time incorporates the learning rate that decreases
logarithmically with experience, modeled by the
power law of practice*:

Trow = ay X e(_brXt) - Cr

where t denotes the number of previous trials,
and ar, br, and cr are parameters to be

laearnean
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Block

* Based on formula in:

Gilles Bailly, Antti Oulasvirta, Duncan P. Brumby, and Andrew Howes. 2014. Model
of visual search and selection time in linear menus. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI '14). ACM, New York,
NY, USA, 3865-3874. DOI: https://doi.org/10.1145/2556288.2557093
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Resu Its Visual search

=il

I 12-row 24-row
I 18-row I 30-row

O -

- No statistical differences, but
some tendency to center.

Navigation Pointing



Results Visualsearch
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-> No statistical differences, but = Users tend to look at the center.

some tendency to center.



Results Visualsearch
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-> No statistical differences, but = Users tend to look at the center.

some tendency to center.

We model visual where v is the bias term, and
search as a linear T,s = |(colLen/2 — col)| X T.o; +v Tcol is the time for the user to
scan from the center of visually scan each column.

the columns:



Results Visualsearch
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of practice: learned.



Results Navigatior
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Results Navigatior

Question: Time initially increases but decreases towards end — why?
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Results

Question: Time initially increases but decreases towards end — why?

Error Bars: 95% ClI
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Top-down (80.2%): The user navigates from the top of the
menu continuously downwards, until the target is found.

Bottom-up (19.8%): The user performs a flick gesture to
absolutely scroll to the bottom. Then, the user selects a
target (17.3%), or navigates up and selects another (2.5%).




Results Navigatior

Question: Time initially increases but decreases towards end — why?
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Results Navigatior

. Probabilistic strategy regulation:
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Results Navigatior
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Probabilistic strategy regulation:

For each strategy, time is linear with row position:
Strattop = POSrow X Trow + btop

Stratpy = (lenmw — POSmw) X Trow + Dpor

Sprob is a sigmoidal function that outputs a
probability between 0 and 1, based on a linear
combination of three values: the first letter of the
target name, the user experience, and the

g.sr},%%”@?éigmoid (Sp+ Sw1 X lenpgy + Sy2 X I+ 53 X Sexp)

where sb and swi are the bias and weights, and sexp, the
expertise of using a strategy



Res u ItS Learning Visual search Navigation Pointing

Pointing modelled by Fitts’ Law

T:[I—-—EJ].UHJE (1—|—%)

D = distance (touch_start, target)
- Touch_start: modelled as center of screen
- Target:

- X:given by column

- Y:unknown

Question: How to acquire Y position?



Res u Its Learning Visual search Navigation Pointing

Where is Facebook?




Res u Its Learning Visual search Navigation Pointing

Where is Facebook? Where was the target on average?
— Normal
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Res u Its Learning Visual search Navigation Pointing

How to model? Where was the target on average?
— Normal

Each row gets a probability: 120.0
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Res u Its Learning Visual search Navigation Pointing

We compute the weighted average of the Where was the target on average?
cost for each row jto estimate pointing
time: VieWrows

— Normal

Tpoint — Prow j X Tpointmwj sl
—1

J 100.0

®©
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For each row j, time is calculated by the Fitts’ Law model:
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Tpointmwj =ar+byrlog, (1 + W

Mean =
1274.2422
Std. Dev. =
543.54581

40.07

The probability for the target to be on each row j is

determined by a probability density of normal distribution
to reflect how the Y positions are distributed across the T
screen in our sthIy:
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Project 1: User Performance Modelling

Implicit

Data collection & offline analysis

Outline:

1.ldea

2.User study
3.Results

4.Model & Evaluation



Model & Evaluation

1;
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Model & Evaluation

Evaluation details:

-  Model implemented in TensorFlow with stochastic gradient descent

- Trained on the study data
- 2-fold cross-validation
- Model fitting: R? between 0 (no fit) and 1 (same data)

I Observed I Predicted

Results:

Block: R? = .990 (8 blocks)
Block x Gridlength: R? = .942 (8 block x4 grid)
Column x Gridlength: R* = .909 (5 col x4 grid)

Row x Gridlength: R? = 813 (6+9+12+15 rows)
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Prediction benefit depends on interaction cost.
- Incorporate interaction cost in prediction.
- Use a model that predicts cost, i.e. app selection time.

> What model? 1; = 154, + Tys + Thoine



Model integration

“Normal” probability based optimisation
(cost of selecting an app in drawer)

New utility based optimisation
(G represents the model)

New optimization based on utility

st — C ifi € Top5(F;)
" | Gl(i,t,g) otherwise

Ut :PIQG(tag)

COS[i . C ifi € TOpS(Ut)
" | G(i,t,g) otherwise



Simulation experiment
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Visual attention

User controls Ul with their eyes.
Select, use, manipulate.

> Explicit

Adapt Ul to user.
Personalise, learn, enhance.
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Eve trackers require calibration




Motivation: the typical gaze calibration

« Establishes mapping between eye input space and screen output space.
« Sampling of eye gaze at known points on-screen.

« Tedious, unnatural procedure
« Fixed start and end point

« Reliance on user performance



Pursuit Calibration — a new gaze calibration method

* Based on a moving calibration target.
 Collects calibration samples when the user pays attention to the moving target.

Collecting samples Sampling paused






Uncalibrated gaze

coordinates | Moving target
coordinates

Correlation of both
coordinate streams

User attention on target

Pursuits: Spontaneous Interaction with Displays based on Smooth Pursuit Eye Movement and Moving Targets,
M. Vidal, A. Bulling and H. Gellersen, Proc. of UbiComp 2013.
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Visual attention

Adapt Ul to user.
Personalise, learn, enhance.

User controls Ul with their eyes.
Select, use, manipulate.

> Explicit

Implicit <

User performance modelling
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Movement correlation & calibration
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Devices




Input devices

Touchpad




Input devices

Direct input Indirect input

Input position equals output position Input is offset from output position

Touchpad




Where are you looking?
\\w K\\’
/ R .‘— R

Direct input Indirect input




Gaze-shifting
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Pen and touch display + eye tracking




Example application: Multiple menus

Useful for rapid mode switching
* Switch colour mode

* Switch brush size

* Switch pen tool
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Cursor redirection based on
Shumin Zhai, Carlos Morimoto, and Steven Ihde. 1999. Manual and gaze input cascaded (MAGIC) pointing. In Proceedings of the SIGCHI conference
on Human Factors in Computing Systems (CHI '99). ACM, New York, NY, USA, 246-253. DOI=http://dx.doi.org/10.1145/302979.303053



Visual attention

User controls Ul with their eyes.
Select, use, manipulate.

> Explicit

Adapt Ul to user.
Personalise, learn, enhance.

Implicit <
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User performance modelling  Movement correlation & calibration I’nput shortcuts




Gallery - Scrolling




Gallery — Select image, and back




Gaze + Pinch interaction

Concept Real Virtual

Gaze selects, hands manipulate HTC VIVE + Leap Motion Objects/scene in Unity 3D
+ Pupil eye tracker



Left Eye:(0.4, 0.5)
Right Eye:(0.5, 0.5)




Left Eye:(0:4, 0.5
Right Eye:(0.5




el Eye: (0.4, 0.
Right Eye:(0.5, 0.5)




Using Visual attention in User Interfaces

User controls Ul with their eyes.
Select, use, manipulate.

> Explicit

Adapt Ul to user.
Personalise, learn, enhance.

Implicit <
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Using Visual Attention in User Interfaces

User controls Ul with their eyes.
Select, use, manipulate.

> Explicit

Adapt Ul to user.
Personalise, learn, enhance.

Implicit <
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User performance modelling  Movement correlation & calibration

User interface

Gaze + Manual Input

Thank you! Any questions?

More information on kenpfeuffer.com



