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Abstract 
For the past six years, the HCI community has been 
exploring electrical muscle stimulation (EMS) as a 
means for creating interactive systems, such as to 
teach musical instruments, simulate the presence of 
rigid objects in virtual reality, or guide users while 
walking. However, looking at the field of haptics, we 
see systems based on mechanical actuators, such as 
exoskeletons and pulley systems that achieve similar 
functionality. In this article, we explore this analogy. 
We discuss the similarities, as well as the key 
differences between these two approaches. Is EMS’ 
potential to pack force feedback into a wearable form-
factor really the main differentiator? 
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Introduction 
For the past six years, the HCI community has been 
exploring electrical muscle stimulation (EMS) as a 
means for creating interactive systems. Applications 
tend to fall into three main areas: (1) immersion, such 
as simulate collisions in the virtual reality (e.g., 
Impacto [39]); (2) information access: as platform for 
I/O (see Figure 1) or guiding users while walking [32]; 
and (3) Training, such as to teach musical instruments,  
(e.g., PossessedHand [12]).  

However, when looking at the related field of 
haptics [19,52], we find an analogy between human 
actuation based on EMS or on mechanical actuators 
(e.g., exoskeletons) as both approaches achieve a 
similar resulting effect, i.e., apply a force to the user’s 
body. Figure 2 illustrates this analogy: both approaches 
produce a similar resulting effect: limb displacement. 

To illustrate this further, we draw parallels between the 
two approaches using concrete examples: Gesture 
Output [1] actuates the users fingers via a clear sheet 
pulled by motors, while Muscle-Plotter [41] achieves a 
similar effect using EMS. Third Hand [56] uses a 
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Figure 1: An example of an EMS-
based interactive device that 
turns proprioception in an I/O 
channel [40].  
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forearm-mounted robotic arm to provide force-feedback 
to a mobile phone, while Muscle Propelled Force 
Feedback [38] achieves this effect based on EMS. 

Also, “under the hood” EMS and mechanical actuators 
are quite similar, which is illustrated in Figure 3.  The 
typical EMS hardware is comprised of a stimulation unit 
and an electrode pair; these electrodes sit on the user’s 
skin and deliver the electrical impulses, these cause the 
muscle to contract involuntarily and hence, move the 
user’s limb. Similarly, mechanical actuators, such as 
exoskeletons, are comprised of four elements: a motor 
driver (e.g., a microcontroller), a motor, a link 
(between the motor and the user’s limb) and an 
attachment to the user’s limb.  

So to what extent does are these two technologies 
interchangeable? In the following we take a closer look 
at the two approaches, i.e., actuation based on EMS 
and mechanics. We discuss the similarities, as well as 
the key differences between these two approaches.  

Main applications of EMS 
Replacement of human motor functions: In the 
60s, EMS originated in the field of rehabilitation 
medicine. It aims at helping patients that lost motor 
functions (e.g., as a result of spinal cord injury) [53]. 
Most of the applications artificially induce body 
movements, such as grasping [24], walking [44], 
swallowing [47] and standing upright [15]. 

Teleoperation: Twenty years later, artists started to 
explore EMS in interactive art works. The early works of 
Stelarc [51,3] depicts examples of a simplified and 
early form of teleoperation between a human arm 
(moved by EMS) and a robotic arm. Similarly, the 

artwork of Manabe demonstrates the transfer of facial 
expressions between two users using EMG & EMS [28].  

Only recently, EMS was used for interactive purposes 
by researchers in human-computer interaction. This has 
been clustered around three themes: 

Training: In PossessedHand [12], EMS was employed 
as an output system to learn haptic tasks such as 
playing a string musical instrument. Similarly, EMS has 
been used to teach rhythmic patterns [4].   

Immersion: The first interactive applications of EMS in 
revolved around gaming [16, 14]. These EMS-based 
haptic interfaces provided stronger sensations than the 
traditional vibrotactile feedback. In fact, researchers 
showed how EMS effectively miniaturizes force 
feedback, making it available, for instance, in mobile 
devices [38]. These, EMS-driven physical sensations 
increase the realism of interactive virtual environments. 
For example, EMS counter-forces enable users to feel 
the resistance of walls or the weight of objects in 
virtual reality (VR) [43]. Also, combined EMS and 
tactile stimuli simulates the sensation of hitting or 
being hit in VR [39]. 

Information Access: By adding input to EMS-based 
systems researchers closed the I/O loop. Hence, 
providing a platform for information I/O [40]. This idea, 
denoted as Proprioceptive Interaction (i.e., using poses 
of the both for input & output) allows users to interact 
eyes-free. This principle has been applied to, for 
example: allowing everyday objects to communicate 
their usage (Affordance++ [42]) and for systems that 
communicate walking directions [32] or incoming data 
[49,13]. Lastly, by persisting the EMS output (e.g., as a 

  

Figure 2: (a) Limb displacement 
can be achieved e.g., using (b) 
mechanical actuators or (c) EMS. 

 

Figure 3: Analogy between the 
hardware components that make 
up a (a) mechanical actuator 
(here an exoskeleton [8]) and (b) 
an EMS-based actuator [38].  

 



 

physical trace, using a pen on a paper), we see also a 
new generation of EMS-based interactive systems that 
aims at supporting sensemaking [41]. 

Main applications of mechanical actuation  
Interestingly, as summarized by Figure 4, we find that 
to some extend all these application scenarios have 
been first explored using mechanical actuators. 

 EMS Mechanical 

Teleoperation 1995 [51] (in art) 1948 [46] 

Replacing motor functions 1979 [53] 1969 [36]  

Information Access 2015 [40, 42, 32] 1973 [50] 

Training 2011 [12] 1980 [10] 

Immersion 2006 [14] 1992 [6] 

Figure 4: Summary of research in EMS and mechanical 
actuators in the different haptic domains [52]. (Dates 
represent earliest findings to the best of our knowledge) 

Replacement of motor functions: besides early 
stationary machines for assisted rehabilitation [10], 
exoskeletons are popular for gait regeneration [27]. 

Teleoperation: precisely transmitting forces between 
two remote users [55,19,52]. In fact the first 
teleoperator robotic manipulators, such as the GROPE 
IIIb [17], were the precursors to today’s desktop haptic 
systems (such as the Phantom [30]) and their 
functionality remains “unchanged” [52].  

Information access: between users and computers 
(or other users) was also facilitated by means of 
mechanical actuators such as force feedback [50].  

Training: systems use haptics to enhance learning of 
physical tasks such as palpation training [31].   

Immersion: early force feedback devices were applied 
for increasing realism of virtual experiences [6]. Other 
popular mechanical designs for immersive feedback are 
pulley systems (e.g., SPIDAR [35] or SPIDAR-W [25]). 

Is Mechanics interchangeable with EMS? 
At this point one might wonder: if an application was 
previously implemented using a mechanical-based 
actuator, can it then be replicated by means of EMS? 

Not necessarily. There are two main advantages of 
mechanical actuators: extra power and precision. 

Mechanical actuators are more precise and reliable 
and hence are used for precise applications such as 
robotically assisted surgery [37]. In contrast, current 
EMS-based systems, are more imprecise due to: (1) 
the layered nature of the human muscles (on-skin 
electrodes cannot target a specific layer [34]); and, (2) 
the competition between user’s own muscle tension and 
the EMS induced contractions. Resulting challenges in 
terms of improving EMS include: 

1. Automatic calibration procedures (e.g., [29]) 
2. Electrodes that allow for embedding in textiles [23]  
3. Higher precision (e.g., implanting electrodes [33]?) 
4. Add muscle tension to the control loops (e.g., [22]) 

Exoskeletons can be more powerful than the 
human that carries it. In fact these were originally 
envisioned to achieve the effect that power assisted 
steering has in an automobile [52]. Since EMS uses the 
user’s own muscles it cannot draw external power to 
supersede the user’s strength.  



 

Is EMS interchangeable with Mechanics? 
So now we ponder on the reversed question: if an 
application was implemented using an EMS system, can 
it then be replicated by means of mechanics? 

Not necessarily. There are two main advantages of 
EMS: it is mobile and it reaches more actuation sites.  

EMS is mobile: in [38], we claimed that a key 
advantage of EMS is that it is capable of delivering 
strong force feedback in a mobile/wearable form factor. 
It is lighter and requires less energy than mechanical 
actuators. The low energy consumption of EMS-based 
systems comes from the fact that the muscles are our 
internal motors. Hence, the EMS needs only to provide 
a control signal to activate the muscle (as a motor 
driver does) but the power comes from inside the body. 
In fact exoskeleton-like actuators are an approach that 
is still “confined to academic research labs and absent 
from commercial catalogues” [52] due to their cost, 
complex infrastructure and limited practicality.   

EMS reaches more actuation sites than mechanical 
actuators. As we’ve discussed EMS leverages the 
internal muscles and skeleton to directly actuate limbs. 
This enables EMS-based actuators to reach areas where 
we cannot envision how to mount the attachment to 
the mechanical actuator. For instance, Vibr-o-matic 
stimulates muscles of the abdomen and larynx to allow 
novice singers users to teach vibrato (amplitude 
modulation while singing) [48]. This actuation site 
would be hardly reachable with a mechanical actuator. 
To further exemplify sites not easily reached by 
mechanical actuators, EMS has been used to simulate 
food texture by actuating the jaw muscles [2].  

EMS feels different than an exoskeleton. This 
might be another advantage of EMS but remains to be 
validated. The fact is: when moved by the exoskeleton 
an external force is what moves the user’s limb. So the 
user mostly feels: passive muscle stretch [45] and 
pressure (caused the apparatus pushing against the 
user’s limb). However, when moved by means of EMS: 
the muscle stretch is no longer passive, which means it 
is sensed by additional receptors that sense force (the 
Golgi Tendon organs) [45], but there is a new tingling 
sensation, caused by the electricity passing through the 
skin [7, 54].  

To sum it up: we can now answer: is EMS’ potential to 
pack force feedback into a wearable form-factor really 
the main differentiator? Yes, but EMS is not limited to 
that. It seems that EMS can be more than a smaller 
rendition of the mechanical approach, since it reaches 
more actuation sites and evokes different sensations. 

Conclusions & Future Work 
So are EMS and mechanical actuators two sides of the 
same coin? Our analysis above certainly points out a lot 
of similarities. In addition to our earlier observation 
that EMS-based interactive systems allow for 
smaller/wearable form factors, additional differences 
include: (1) the higher precision of mechanical 
actuators (2) EMS’ ability to actuate areas otherwise 
unreachable using mechanical attachments. 

As for future work, there may be other angles from 
which we can tackle this question, for instance: what 
impact does EMS- and mechanically induced gestures 
have on user’s sense of agency? Answering this 
question might potentially impact the design of haptic 
training applications, such as guided learning [9,20].  
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