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ABSTRACT
Driving a car is becoming increasingly complex. Many new
features (e.g., for communication or entertainment) that
can be used in addition to the primary task of driving a
car increase the driver‘s workload. Assessing the driver‘s
workload, however, is still a challenging task. A variety
of means are explored which rather focus on experimental
conditions than on real world scenarios (e.g., questionnaires).
We focus on physiological data that may be assessed in an
non-obtrusive way in the future and is therefore applicable
in the real world.

Hence, we conducted a real world driving experiment with
10 participants measuring a variety of physiological data as
well as a post-hoc video rating session. We use this data
to analyze the di↵erences in the workload in terms of road
type as well as especially important parts of the route such
as exits and on-ramps. Furthermore, we investigate the
correlation between the objective assessed and subjective
measured data.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation (e.g.,
HCI)]: User Interfaces

General Terms
Human Factors

Keywords
Adaptive systems, automotive user interfaces, data set, phys-
iological sensing, real world driving study, workload.

1. INTRODUCTION
Measuring the driver’s workload is an important indicator

to estimate the driver’s ability to maneuver a car. Despite the
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Figure 1: Study setup: Two cameras and a smart-
phone are placed within the car (bottom left). The
driver is connected to electrodes measuring the
Heart Rate (top left). Skin Conductance Response
(top right) and Body Temperature (bottom right)
are measured at the drivers left hand.

primary task of driving a car, nowadays drivers are engaged
in various other tasks. These tasks are not only related
to the actual driving task but also comprise secondary and
tertiary tasks [3, 7]. While secondary tasks are related to
increasing safety of car, driver, and environment, tertiary
tasks (e.g., using mobile phones or talking to passengers) are
related to infotainment and communication and are factors
that influence the driver’s workload.
Various factors are known to a↵ect the driver’s workload

(cf., [10]). One of these factors is the context in which the
driver is operating the vehicle: For instance, drivers might
feel more stressed during heavy rain on a jammed highway
than on sunny days driving along an empty road. Another
influencing factor is the general condition of the driver that
may change because of time pressure, current events, or
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the driver’s mood. These factors potentially increase the
workload for the driver and interfere with the driving task.

The goal of using non-invasive, easy-to-use sensors to au-
tomatically assess the workload is still a challenging task:
Physiological data such as the current heart rate can be
measured while driving but often require the driver to wear
special sensors attached to driver’s body. As this might nega-
tively influence the driver’s willingness to use such a system,
technologies are necessary that do not need to be installed
manually: Currently, new methods to asses the physiological
condition by using optical technologies (e.g., [18]) are arriving
the mass market. For instance, Smartphone apps allow to
measure the heart rate by analyzing face videos1. Bringing
this technology into the car will reveal new methods for tak-
ing the driver’s workload into account by creating adaptive
interfaces and security systems.
The contribution of this paper is twofold. At first, we ex-

plore the di↵erent factors influencing the workload in detail.
Therefore, we conducted a real-world driving study on public
roads with 10 participants as we believe that workload cannot
easily be assessed in a simulator study. The results show
that the workload significantly di↵ers for di↵erent road types.
Furthermore, we explore the correlation between subjective
data (using video rating) and objective data (using physio-
logical sensing). Later, we look into two specific points of
interest and explore their influence on the driver‘s workload.
A second contribution is the data set itself: We recorded all
parameters and release the data set to be publicly available
for other research projects.

2. RELATED WORK
Di↵erent methods to assess the driver’s workload have

been explored in the automotive domain. The methods are
either subjective (e.g., asking the user) or objective (e.g.,
measuring the users physiological properties or performance).
Driver‘s workload is defined by de Waard as “the amount
of information processing capacity that is used for task per-
formance” [23]. The di↵erences between workload and dis-
traction has been discussed by Mehler et al. [10]. They state
that distraction can also occur while the driver’s workload
is very low, e.g. through daydreaming. Thereby, the driver
retains enough ”capacity” to react appropriately on critical
situations, which is not the case if a complex tertiary task
induces high a workload.

2.1 Subjective Methods
One of the early approaches using questionnaires to assess

the workload for users operating heavy machines is the NASA
Task Load Index [4]. This questionnaire was later adopted by
Pauzie for the automotive domain known as the Driver Ac-
tivity Load Index [16]. The Subjective Workload Assessment
Technique is another questionnaire that divides the mental
workload into three areas [19]: Time Load, Mental E↵ort
Load, and Stress Load. A very simple scale is the Rating
Scale of Mental E↵ort, which constitutes a quick method to
assess the subjectively felt e↵ort of the driver [26]. These
questionnaires are commonly used assessing the driver‘s work-
load.
Another approach to assess the workload is showing the

user a video of the drive and ask to rate the workload for

1
http://www.whatsmyheartrate.com/ (accessed June 25,

2013)

this situation using a specific scale (e.g., used by Totzke et al.
in [22]). These approaches, however, have a temporary delay
and may, therefore, reflect rather the perceived workload
then the actual workload.

2.2 Objective Methods
In contrast to subjective rating scales, objective methods

such as physiological sensing or engaging driver in secondary
tasks were used. Physiological Sensing uses the reaction of
the body to reflect onto the drivers workload. Therefore
values such as the skin conductance response (SCR), heart
rate (HR), or skin temperature are measured.

Michaels [12] showed that the SCR is related to the amount
of traffic the driver is facing at the moment. The direct
relation to the workload is shown by Collet et al. [2] in an
experiment with air traffic controllers.
Mittelmann and Wol↵ [13] found that there is a strong

correlation between skin temperature and emotional stress.
In contrast, Or and Du↵y [15] used a thermal camera as a non-
intrusive way. They showed a signifcant correlation between
driver’s workload and facial skin temperature through a
driving simulator and field experiment. However, the work of
Anzengruber and Riener [1] indicates that thermal imaging
does not work reliably to classify the driver’s stress level.
Roscoe [21] found a strong correlation between HR and

workload in studies with pilots. Meshkati [11] and Myrtek et
al. [14] report that a decreased heart rate variability (HRV)
indicates increased workload. HR and HRV are commonly
measured by electrodes attached to the user‘s body. For
instance, Riener et al. [20] measured the HR in a field study
investigating the driver‘s arousal state indicating critical
situations in which the driver should be aware of. However,
di↵erent approaches are investigated to get rid of attaching
electrodes. Ford2 proposed a system by using the seat belt
to measure the HR. Wu et al. [24] showed that the HR is
observable with a SLR camera. These methods allow the
integration in an non obtrusive way that might open up mass
market capabilities.

In contrast to physiological sensing approaches, there are
methods that engage the user in a secondary task. Then
inference is drawn from the performance in this task about
the workload. For the ”n-back” task a sequence of stimuli is
presented and the driver has to react through speaking aloud
the same stimulus as the one presented n steps before. Mehler
et al. [9] used this technique to evaluate the relationship
between HR and SCR with the workload increased by such a
task. They showed in a driving simulator study that the HR
as well as the SCR are influenced by an increasing workload.
The peripheral detection task (PDT) is another approach in
which the user has to react on a stimulus in the peripheral
field of view as fast as possible. The reaction time as well
as the detection rate are measured to give insights into the
user’s workload level. Jahn et al. showed in a field study that
the PDT is a useful method to assess the driver‘s workload [5].
Knappe et al. used small subliminal steering maneuvers to
get insights into the drivers workload [8].

To our knowledge, the study presented in this paper is the
first study recording workload with a comprehensive set of
physiological sensors and context information in a real world
driving study with at least 10 participants.

2
http://media.ford.com/article_pdf.cfm?article_id=

34669 (accessed June 25, 2013)
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3. REAL WORLD DRIVING STUDY
Assessing the drivers‘ workload in a simulator study is

hardly possible, because drivers always know that they navi-
gate through a virtual world. Therefore, we conducted a real
world driving study consisting of a drive of about 30 minutes
and a subsequent video rating session.

3.1 Apparatus and Data Collection
Three di↵erent data sets were recorded during the driving

session (see Figure 1). At first, the physiological state of
the driver is recorded. Hence, three sensors were attached
to the participant. The skin conductance and temperature
sensors were attached to the participant‘s left hand whereas
the ECG was attached to the participant‘s chest. These
sensors were connected to the Nexus 4 Biofeedback system3

that has been used to record the driver’s physiological data.
At second, context data was collected through an Android
Smartphone (Google Nexus S). In particular, the GPS posi-
tion, brightness level, and acceleration were recorded. At last,
two webcams (Logitech QuickCam Pro 9000 and Creative
VF0610 Live! Cam Socialize HD) were used to record the
driving scenario (passenger view onto the road) and a view
of the driver as shown in Figure 2. As all data sets were
recorded with di↵erent sampling frequencies timestamps were
used to synchronize all data post-hoc.

3.2 Participants and Procedure
In total, ten participants (3 female, 7 male) aged between

23 and 57 years (M = 35.60, SD = 9.06) took part in this
study. We recruited the participants within the employees of
our institute in order to be covered by insurance. All of them
owned a valid driver’s license and brought their own car they
were used to drive. The participant and the participant’s car
were first equipped with the di↵erent sensors by a researcher.
Then, the participant was instructed to drive a specific route
(cf. Figure 3) with the researcher guiding them by simple
voice commands (e.g., “on the next intersection: please turn
left”) from the backseat. After returning from the drive, the
participant was guided to our lab and directly performed a
video rating, evaluating the perceived workload from high
to low using a slider. The video shown was a side by side
composition of the video recorded while driving (cf. Figure 2).

3.3 Route
The selected route for our study has a total length of

23.6 km and consists of various road types (cf., Figure 3).
For the evaluation of our study, we classified five di↵erent
road types: 30 km/h zone, 50 km/h zone, highway, freeway,
and tunnel. The tunnel in general is an ordinary road. How-
ever, we choose to add it as a special road type, because
of the special conditions that may influence the driver (e.g.,
lighting). Furthermore, we defined di↵erent points of interest:
2x on-ramp, 2x freeway exits, 2x roundabouts, 20x traffic
lights, and 2x curvy roads. Due to the fact that we conducted
a real world driving study, we cannot control the environment
(e.g., traffic, weather). However, we strove for a consistent
setting among all participants: none of the participant drove
during rush hours and the study was only conducted during
daylight.

3
www.mindmedia.nl (accessed June 25, 2013)

Figure 2: The five di↵erent road types: 30 km/h
zone, 50 km/h zone, highway, freeway, and tunnel.
The view of the driver camera is shown on the left
side and the front view on the right side. This side
by side composition video was shown to the partici-
pant during the video rating session.

4. DATA SET
The data set we recorded is publicly available as an archive

of comma separated files4 where each file contains the merged
data set of the recordings of one participant. The complete
data set has a size of 450MB and consists of 2.5 million
samples. It is anonymized and contains information about
GPS, brightness, acceleration, physiological data, and data
of the video rating. Note that the number of samples per par-
ticipant varies due to di↵erent traffic conditions and driving
behaviors resulting in di↵erent driving times. We excluded
the video from the data set for privacy reasons.
Beyond the analysis of this paper, this data set may be

used for di↵erent purposes. A first evaluation of concepts
of automotive systems can be done without the need of

4The file can be found at: www.hcilab.org/automotive/
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Figure 3: Map of the route each participant drove during the study. Each type of road is marked accordingly
(A8: freeway, B14/B27: highway, ordinary streets (50 km/h), 30 km/h zone. All points of interest (freeway on-
ramp/exit, roundabout, traffic lights, roundabouts, tunnel entry/exit) are shown with the respective symbols.
Map cOpenStreetMap contributors, tiles CC-BY-SA 2.0.

conducting an own study. We believe the data set has a
value for the research community and we believe this could
be a starting point for building a larger collection of data
sets.

4.1 Location - GPS
The GPS information is recorded via the mobile phone.

On the one hand, the GPS data consists of the longitude and
latitude values (in degree) that define the position of the car.
On the other hand, it contains further information about
accuracy (in meter), altitude (in meter), speed (in meter per
second), and bearing (in degree). In order to map the GPS
data to the other data, a timestamp has been recorded as
well. The information has been recorded at a frequency of
1Hz.

4.2 Brightness and Acceleration
Further information recorded on the mobile phone were

brightness as well as acceleration as perceived by the phone’s
sensors. The brightness is a single value measured in lumen.
In contrast, the acceleration consists of three values for the X,
Y, and Z direction. Both sensors have their own timestamps
and are recorded at frequencies between 8Hz and 12Hz.

4.3 Physiological Data
Several physiological sensors are used to record information

about the driver. We used a Nexus 4 physiological sensing
system. The electrocardiogram (ECG, in µV ) is recorded
at 1024Hz and is used to calculate the heart-rate (beats per
minute) and heart rate variance at 128Hz. Furthermore, the
skin-conductance (in µS) and body temperature (in degree
Celsius) are recorded at 128Hz, as well. Again, a timestamp
is recorded for all physiological data.

4.4 Videorating
The score of the post-hoc video rating is recorded between

0 (no workload) to 128 (maximum workload). In addition,
the frame the user saw during the rating is recorded. It
is ascending numbered starting from 0 with a frequency
equivalent to the video frame-rate of 29 frames per seconds.

4.5 Data Extrapolation
The data is recorded at di↵erent sample rates. Hence,

some data needs to be extrapolated to create a uniformed
data set. We chose to extrapolate the data to the highest
frequency keeping all available information of the sensor with
the highest sample rate (ECG).
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5. ANALYSIS AND DISCUSSION
In the following we present the results of the study. At first,

the correlation between the objective and subjective measures
is investigated. Afterwards, the statistical di↵erences between
the road types are shown as well as the statistical di↵erences
between points of interest and road type.

5.1 Data Preparation
Before evaluating the recorded data, it needs to be pre-

pared to remove noise e↵ects as well as to normalize the
physiological properties of each participant. We modified the
data in several steps. At first, we sampled the data up to
one sample per second, taking the mean of each value. We
used the acceleration values to create a force vector. This
vector is used rather than the force values for each dimension.
Next, we normalized the physiological data as well as the
video rating results to achieve comparable values between all
participants in the range of 0 to 1.
In this evaluation we focus on two physiological values

(Skin Conductance Response (SCR) and Body Temperature
(BTemp) as suggested by related work (cf., [12, 13])), the
results of the Video Rating (VR), and the actual driving
speed.

5.2 Comparing Subjective and Objective Data
At first, we compared the subjective measurement (VR

- cf. Figure 4) with the objective measurements (SCR and
BTemp). Hence, we conducted correlational research com-
paring the VR to the physiological values using Pearson‘s
correlation coefficient. The SCR and VR, r(17725) = .202,
p < .001, as well as the BTemp and VR, r(17725) = .128,
p < .001, are positively correlated. The correlations are both
statistically significant, however, the e↵ect size is small.

Figure 4: A participant is performing the video rat-
ing task.

Evaluating all participants individually, we see a high
variance in the the data. For instance, the data of participant
# 10 shows high correlation for VR with SCR, r(1903) = .689,
p < .001, and VR with BTemp, r(1903) = .449, p < .001 (cf.,
Figure 5). In contrast, the data of participant # 6 shows
only a significant correlation for BTemp, r(1710) = .072,
p < .01, and a no significance for the SCR, r(1710) = .043,
p = .078. Thus, the data highly di↵ers from driver to driver.
This needs to be taken into account when using these values
for assessing the workload.

5.3 Impact of Road Types
Next, we evaluated the di↵erences between the five road

types. Since the values highly depend on each other and the
di↵erent road types are not equally distributed within our
sample (cf., Figure 5), we chose to use the mean values of
each participant on each type of road. Thus, we eliminate
most of the dependencies in the data and create an equal
distribution.
The results show that the physiological data (SCR and

BTemp), and hence the workload, is influenced by the road
type. The variance in the data is high (cf., Figure 6), which
indicates that all types of roads have situations in which the
workload is high. Furthermore, we used a repeated measures
analysis of variances (ANOVA) to investigate statistically
significant di↵erences. A Shapiro-Wilk test shows for all cases
that the assumption of normal distribution is not violated.

Table 1: Overview of the mean and standard devi-
ation of the normalized skin conductance response
(SCR) and body temperature (BTemp) on the dif-
ferent road types.

Road Type MSCR SDSCR MBTemp SDBTemp

30 km/h zone .482 .178 .357 .152
50 km/h zone .423 .152 .484 .137

Highway .343 .110 .487 .156
Freeway .271 .121 .522 .155
Tunnel .394 .223 .468 .266

Skin Conductance Response.

The SCR is lowest for the freeway and highest for the 30
km/h zone (cf. Table 1). Mauchly‘s test indicates that the
assumption of sphericity had been violated, χ2(9) = 17.890,
p = .041, therefore, degrees of freedom were corrected using
Greenhouse-Geisser estimation of sphericity, ✏ = .529. The
ANOVA reveals statistically significant di↵erences within the
five road types, F (2.116, 19.042) = 6.756, p < .05, ⌘2 = .429.
A Least Significant Di↵erence (LSD) post-hoc test reveals
a statistically di↵erence between all road types, p < .05,
except for Tunnel with 50 km/h zone, p < .438, and highway,
p < .439. This can be explained by the fact that the Tunnel
in our route is at a highway with a speed limit (50 km/h).

Body Temperature.

The BTemp is lowest for the 30 km/h and highest for the
freeway (cf. Table 1) indicating that the workload is highest
for the 30 km/h zone and lowest for the freeway. Again,
Mauchly‘s test indicated that the assumption of sphericity
had been violated, χ2(9) = 27.069, p = .002, therefore,
degrees of freedom were corrected using Greenhouse-Geisser
estimation of sphericity, ✏ = .357. After the correction, the
ANOVA does not reveal statistically significant di↵erences
within the road types F (1.427, 12.842) = 1.305, p = .292,
⌘2 = .127. Even with the ANOVA not revealing significant
results, the data indicates that at least the 30 km/h zone is
di↵erent from the other road types (see Figure 6).

Driving Speed.

On all five di↵erent road types, the speed limit is di↵erent.
Furthermore, the driving situation (e.g., traffic, weather)
has an influence on driving speed. Again, Mauchly‘s test is
significant. Hence, the assumption of sphericity had been
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Figure 5: The Graph shows the normalized Skin Conductance Response (blue), normalized Body Temperature
(orange), and the normalized result from the Video Rating (red) of a single user (User #10).

Figure 6: Boxplots for Skin Conductance Response and Body Temperature for each of the five road types.

violated , χ2(9) = 37.846, p = .000, therefore degrees of
freedom were corrected using Greenhouse-Geisser estimation
of sphericity, ✏ = .407. Nevertheless, the ANOVA shows
statistically significant results, F (1.628, 14.649) = 444.505,
p < .05. A Least Significant Di↵erence (LSD) post-hoc
test reveals a statistically di↵erence between all road types,
p < .05, except for highway with freeway, p < .728, because
both road types have similar amount of traffic and roughly
the same speed limits.

Video Rating.

In the VR session, the participant rated the highway lowest
and the 30 km/h zone highest (cf., Table 1). The assump-
tion of sphericity had been violated, shown by Mauchly‘s
test of sphericity, χ2(9) = 20.589, p = .017, thus, degrees
of freedom were corrected using Greenhouse-Geisser estima-

tion of sphericity, ✏ = .601. Between the road types, the
ANOVA does not reveal any statistically significant di↵er-
ence, F (2.405, 21.647) = 1.249, p = .312, ⌘2 = .122. Again,
the highest di↵erence is between the 30 km/h zone and the
other road types.

Discussion.

Interpreting the physiological data, the road type has an
influence on the driver‘s workload. The workload seems to
be high especially in the 30 km/h zone (low BTemp and
high SCR and VR) that contains spots in which the driver
has to decide who has the right of way that may increase
the workload. Furthermore, there are a many parked cars
that are potentially sources for unexpected events such as
pedestrians crossing the street, playing children, or car doors
that are carelessly opened. In contrast, the freeway (high
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BTemp and low SCR) is very predictable and does not need
that much attention due to larger distances between the cars.
These results match the results from Micheals et al. [12] as
well as from Mittelmann and Wol↵ [13].

5.4 Points of Interest
We identified five di↵erent categories of points of interest

(POI): on-ramps, exits, roundabouts, traffic lights, and very
curvy road segments. In this evaluation we focus on on
the freeway on-ramp and exit. Hence, we compare the SCR,
BTemp, and VR of these POI with the average of the freeway
by using a series of t tests.
The SCR increases at both POI (on-ramp: M = .409,

SD = .095; exit: M = .328, SD = .152) compared to the
average of the freeway (M = .271, SD = .122). A dependent
t test shows that the di↵erence between on-ramp and freeway
average is statistically significant, t(9) = 3.546, p < .05.
However, the di↵erence between exit and freeway average is
not statistically significant, t(9) = 1.624, p > .05.

Investigating the BTemp, we see a reduced BTemp on the
on-ramp (M = .437, SD = .210) compared to the average of
the freeway (M = .522, SD = .155) but an increased BTemp
on the freeway‘s exit (M = .561, SD = .145). A dependent
t test shows no statistically significant results comparing
the average freeway‘s BTemp with on-ramp, t(9) = 1.668,
p > .05, and exits, t(9) = 1.176, p > .05.
In addition to the objective methods described above,

the subjective VR shows similar results. Both, on-ramp
(M = .463, SD = .285) and exit (M = .384, SD = .239)
are increased compared to the average freeway (M = .302,
SD = .171). A dependent t test shows statistically di↵erences
for the on-ramp, t(9) = 2.643, p < .05, but no di↵erence
for the exit, t(9) = 1.895, p > .05.
Summing these results up, the objective as well as the

subjective methods indicate that the POI result in a di↵er-
ent workload compared to the average freeway. Especially
the on-ramp show statistically significant increased driver‘s
workload.

5.5 Limitations
There are some limitations in the presented study. At

first, we used the data directly from starting the car till the
end. Physiological data can be biased due to nervousness.
However, we think that this e↵ect is rather low because we
tried to create a comfortable environment (e.g., using the
participants car). Second, the number of streets used is very
limited. We strive using a representative set of streets but
the characteristics of streets can be very di↵erent and can
depend on the region (e.g., more stressful in alpine regions).
Third, even though we measured many di↵erent physiological
values in this study, we could only present a limited number
of results in this work. Many parts of the data set might
be evaluated using specific algorithms or more sophisticated
approaches. Thus, we published the collected data set to
encourage further investigations.

6. TOWARDS WORKLOAD-ADAPTIVE
SYSTEMS

Adapting the in-car interface to the driver‘s state can be
used keeping the complexity at a suitable level. Information
that is not necessary at the moment or the shortcut of a
system that is potentially troublesome could be hidden during

high workload. In the following we describe three di↵erent
areas of application in which such a system is useful.

Advanced Driver Assistance Systems.

As soon as the workload of the user is high, the distraction
of the user is increased as well. Therefore, the reaction to
unexpected events (e.g., a breaking car in front) is lowered.
A system that uses di↵erent settings for the driver assistance
systems can react on the di↵erent workload and increase its
involvement into the driving task (e.g., pre-load the brake
pressure).

Automotive User Interfaces.

The information the driver can assimilate easily depends
on the current workload. If the driver‘s workload is low, a
complex visualization of the user interface may reduce the
risk of an increased distraction due to daydreaming [10]. On
the other hand, if the driver is in a high workload situation, a
complex visualization would demand too much of the driver
and thus increase distraction. Hence, an interface with a
reduced complexity would be easier and more safe to operate.
For instance, a workload adaptive navigation system could be
easier to operate in high-workload conditions. Ziegler et al.
propose a system that shows routing information depending
on the driver‘s knowledge of the route [25]. They show that
the adaptive route information is preferred. Such systems
could easily take the workload into account to be more
e↵ective. Another idea could be to make the driver aware of
the current workload. This could for instance be done using
haptic feedback [6].

Communication Systems.

Nowadays, communication is ubiquitous. Although it is
prohibited in many countries, drivers use mobile phones while
driving causing an increased workload and level of distrac-
tion. In many cases this increased level does not result into
situations that are dangerous for the driver. However, in
cases in which the workload is already high, this increase
can lead into dangerous situation. One can imagine a sys-
tem that postpones incoming communication (e.g., phone
calls) until the level of workload is appropriate. Similarly,
the caller could be informed about the current situation by
transmitting certain context information before or during a
phone call [17].

7. CONCLUSION
In this paper we present a real world driving study as-

sessing di↵erent physiological and contextual information.
We created a data set containing about 2.500.000 samples
measured in a real world driving study including a video rat-
ing session taking part afterwards. This data set is publicly
available.
The results from an initial evaluation show significantly

di↵erent physiological values for di↵erent road types. Fur-
thermore, we show a correlation between video rating and the
physiological values. We present three concepts of adaptive
systems in the automotive domain that will benefit from a
workload adaption.
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S. Rothe. Workload-Management im Verkehr:
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